Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Biomolecules ; 11(6)2021 06 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1270006

RESUMEN

The receptor for advanced glycation-end products (RAGE) is a multiligand receptor with a role in inflammatory and pulmonary pathologies. Hyperactivation of RAGE by its ligands has been reported to sustain inflammation and oxidative stress in common comorbidities of severe COVID-19. RAGE is essential to the deleterious effects of the renin-angiotensin system (RAS), which participates in infection and multiorgan injury in COVID-19 patients. Thus, RAGE might be a major player in severe COVID-19, and appears to be a useful therapeutic molecular target in infections by SARS-CoV-2. The role of RAGE gene polymorphisms in predisposing patients to severe COVID-19 is discussed. .


Asunto(s)
COVID-19/metabolismo , Inflamación/metabolismo , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Sistema Renina-Angiotensina , Animales , COVID-19/genética , COVID-19/patología , Humanos , Inflamación/genética , Inflamación/patología , Polimorfismo Genético , Receptor para Productos Finales de Glicación Avanzada/genética , Factores de Riesgo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad
2.
Life Sci ; 272: 119251, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1096150

RESUMEN

A novel infectious disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was detected in December 2019 and declared as a global pandemic by the World Health. Approximately 15% of patients with COVID-19 progress to severe pneumonia and eventually develop acute respiratory distress syndrome (ARDS), septic shock and/or multiple organ failure with high morbidity and mortality. Evidence points towards a determinant pathogenic role of members of the renin-angiotensin system (RAS) in mediating the susceptibility, infection, inflammatory response and parenchymal injury in lungs and other organs of COVID-19 patients. The receptor for advanced glycation end-products (RAGE), a member of the immunoglobulin superfamily, has important roles in pulmonary pathological states, including fibrosis, pneumonia and ARDS. RAGE overexpression/hyperactivation is essential to the deleterious effects of RAS in several pathological processes, including hypertension, chronic kidney and cardiovascular diseases, and diabetes, all of which are major comorbidities of SARS-CoV-2 infection. We propose RAGE as an additional molecular target in COVID-19 patients for ameliorating the multi-organ pathology induced by the virus and improving survival, also in the perspective of future infections by other coronaviruses.


Asunto(s)
COVID-19/complicaciones , Descubrimiento de Drogas , Insuficiencia Multiorgánica/etiología , Insuficiencia Multiorgánica/prevención & control , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , SARS-CoV-2/fisiología , Animales , COVID-19/metabolismo , COVID-19/patología , Humanos , Terapia Molecular Dirigida , Insuficiencia Multiorgánica/metabolismo , Insuficiencia Multiorgánica/patología , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
3.
Eur J Transl Myol ; 30(4): 9485, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1058556

RESUMEN

In 2020, due to the COVID-19 pandemic, the annual meeting of the Interuniversity Institute of Myology (IIM), took place on a virtual platform. Attendees were scientists and clinicians, as well as pharmaceutical companies and patient organization representatives from Italy, several European countries, Canada and USA. Four internationally renowned Keynote speakers presented recent advances on muscle stem cells regulation, skeletal muscle regeneration, quantitative biology approaches, and metabolic regulation of muscle homeostasis. Novel, unpublished data by young trainees were presented as oral communications or posters, in five scientific sessions and two poster sessions. On October 15, 2020, selected young trainees participated to the High Training Course on "Advanced Myology", organized together with the University of Perugia, Italy. The course, on a virtual platform, showcased lectures on muscle development and regulation of muscle gene expression by international speakers, and roundtables discussions on "Single cell analysis of skeletal muscle" and "Skeletal muscle stem cell in healthy muscle and disease". The Young IIM Committee, composed by young trainee winners of awards in the past IIM Meeting editions, was directly involved in the selection of keynote speakers, the organization of scientific sessions and roundtables discussions tailored to the interests of their peers. A broad audience of Italian, European and North American participants contributed to the different initiatives. The meeting was characterized by a friendly and inclusive atmosphere, facilitating lively and stimulating discussions on emerging areas of muscle research. The meeting stimulated scientific cross-fertilization fostering novel ideas and scientific collaborations aimed at better understanding muscle normal physiology and the mechanisms underlaying muscle diseases, with the ultimate goal of developing better therapeutic strategies. The meeting was a success, and the number of meeting attendees was the highest of all IIM Meeting editions. Despite the current difficulties imposed by the COVID-19 pandemic, we are confident that the IIM community will continue to grow and deliver significant contributions to the understanding of muscle development and function, the pathogenesis of muscular diseases and the development of novel therapeutic approaches. Here, abstracts of the meeting illustrate the new results on basic, translational, and clinical research, confirming that our field is strong and healthy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA